If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+14x=169
We move all terms to the left:
2x^2+14x-(169)=0
a = 2; b = 14; c = -169;
Δ = b2-4ac
Δ = 142-4·2·(-169)
Δ = 1548
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1548}=\sqrt{36*43}=\sqrt{36}*\sqrt{43}=6\sqrt{43}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-6\sqrt{43}}{2*2}=\frac{-14-6\sqrt{43}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+6\sqrt{43}}{2*2}=\frac{-14+6\sqrt{43}}{4} $
| 6+1-x=30+5x | | 1/2{6x+10}+2=-20 | | 112=-4(5x+7) | | (X+14)=(4x-40) | | 12+u4=8 | | 2h−13=21 | | -4r+3r=3 | | 7-x-1=2x-6 | | 12=3y-y+4y= | | y+.25+.50=3.25 | | y3(y-5)+2=5 | | -(2+4m)=10-8(m-3) | | -9-7x=-9 | | 53+2s=7 | | -8j-19j-17j=-6 | | 5x+3=2+24 | | 16/23=4/x | | x-(-3)=16 | | 0.4x+8=6(x+2) | | -10=p+9 | | n+2n+(n+10)=180 | | n=3+1/2 | | 3(0.8t-0.8)=3.4t-2.27 | | 7x-22+5x=180 | | 0=(-16x+13)+(-20x+23) | | 1y+3=-1y+9 | | n=3+1/3 | | 15−p=−8 | | 3x+60+2x+40=15 | | 2(7x-4)=-18 | | 3x+6+4x+8=70 | | 50-c=25 |